[1] Bommasani R, Hudson D A, Adeli E, et al. On the
opportunities and risks of foundation models[J]. arXiv
preprint arXiv:2108.07258, 2021.
[2] Dubey A, Jauhri A, Pandey A, et al. The llama 3 herd of
models[J]. arXiv preprint arXiv:2407.21783, 2024.
[3] Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical
report[J]. arXiv preprint arXiv:2303.08774, 2023.
[4] Ma J, Kim S, Li F, et al. Segment anything in medical
images and videos: Benchmark and deployment[J]. arXiv
preprint arXiv:2408.03322, 2024.
[5] Wang H. Sam-med3d: towards general-purpose
segmentation models for volumetric medical images[J].
Preprint at https://arxiv.org/abs/2310.15161, 2024.
[6] Pandey S, Chen K F, Dam E B. Comprehensive
multimodal segmentation in medical imaging: Combining
yolov8 with sam and hq-sam models[C]//Proceedings of
the IEEE/CVF international conference on computer vision.
2023: 2592-2598.
[7] Parulekar B, Singh N, Ramiya A M. Evaluation of segment
anything model (SAM) for automated labelling in machine
learning classification of UAV geospatial data[J]. Earth
Science Informatics, 2024: 1-12.
[8] Hetang C, Xue H, Le C, et al. Segment Anything Model for
Road Network Graph Extraction[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024: 2556-2566.
[9] Zhao X, Wu Z, Chen Y, et al. Fine-Grained
High-Resolution Remote Sensing Image Change Detection
by SAM-UNet Change Detection Model[J]. Remote
Sensing, 2024, 16(19): 3620.
[10] Zhang J, Bai C, He H, et al. SAM-E: Leveraging Visual
Foundation Model with Sequence Imitation for Embodied
Manipulation[J]. arXiv preprint arXiv:2405.19586, 2024.
[11] Ahmadi M, Lonbar A G, Naeini H K, et al. Application of
segment anything model for civil infrastructure defect
assessment[J]. arXiv preprint arXiv:2304.12600, 2023.
[12] Cheng Y, Li L, Xu Y, et al. Segment and track anything[J].
arXiv preprint arXiv:2305.06558, 2023.
[13] Kirillov A, Mintun E, Ravi N, et al. Segment
anything[C]//Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2023: 4015-4026.
[14] Zhang Y, Shen Z, Jiao R. Segment anything model for
medical image segmentation: Current applications and
future directions[J]. Computers in Biology and Medicine,
2024: 108238.
[15] 王淼, 黄智忠, 何晖光,等.分割一切模型 SAM 的潜力与
展望:综述[J].中国图象图形学报,2024,29(06):1479-1509.
Wang M, Huang Z Z, He H G , et al. Potential and
prospects of segment anything model: a survey[J]. Journal
of Image and Graphics, 2024, 29(06):1479-1509.
[16] 孙兴, 蔡肖红, 李明,等.视觉大模型 SAM 在医学图像分
割中的应用综述[J]. 计算机工程与应用, 2024, 60(17).
Sun X, Cai X H, Li M, et al. Review of Application of
Visual Foundation Model SAM in Medical Image
Segmentation[J]. Computer Engineering and Applications,
2024, 60(17).
[17] Zhang Y, Shen Z, Jiao R. Segment anything model for
medical image segmentation: Current applications and
future directions[J]. Computers in Biology and Medicine,
2024: 108238.
[18] Ali M, Wu T, Hu H, et al. A review of the Segment
Anything Model (SAM) for medical image analysis:
Accomplishments and perspectives[J]. Computerized
Medical Imaging and Graphics, 2024: 102473.
[19] Dosovitskiy A. An image is worth 16x16 words:
Transformers for image recognition at scale[J]. arXiv
preprint arXiv:2010.11929, 2020.
[20] Ronneberger O, Fischer P, Brox T. U-net: Convolutional
networks for biomedical image segmentation[C]//Medical
image
computing
and
computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III18. Springer International Publishing, 2015: 234-241.
[21] Chen L C. Rethinking atrous convolution for semantic
image segmentation[J]. arXiv preprint arXiv:1706.05587,
2017.
[22] He K, Chen X, Xie S, et al. Masked autoencoders are
scalable
vision
learners[C]//Proceedings
of
the
IEEE/CVF conference on computer vision and pattern
recognition. 2022: 16000-16009.
[23] Zhao X, Ding W, An Y, et al. Fast segment anything[J].
arXiv preprint arXiv:2306.12156, 2023.
[24] Zhang C, Han D, Qiao Y, et al. Faster segment anything:
Towards lightweight sam for mobile applications[J].
arXiv preprint arXiv:2306.14289, 2023.
[25] Wu K, Zhang J, Peng H, et al. Tinyvit: Fast pretraining
distillation for small vision transformers[C]//European
conference on computer vision. Cham: Springer Nature
Switzerland, 2022: 68-85.
[26] Zhang C, Han D, Zheng S, et al. Mobilesamv2: Faster
segment anything to everything[J]. arXiv preprint
arXiv:2312.09579, 2023.
[27] Xiong Y, Varadarajan B, Wu L, et al. Efficientsam:
Leveraged masked image pretraining for efficient
segment anything[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
2024: 16111-16121.
[28] Ke L, Ye M, Danelljan M, et al. Segment anything in high
quality[J]. Advances in Neural Information Processing
Systems, 2024, 36.
[29] Chen W T, Vong Y J, Kuo S Y, et al. RobustSAM:
Segment
Anything
Robustly
on
Degraded
Images[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024:
4081-4091.
[30] Wu J, Ji W, Liu Y, et al. Medical sam adapter: Adapting
segment
anything
model
for
medical
image
segmentation[J]. arXiv preprint arXiv:2304.12620, 2023.
[31] Chen T, Zhu L, Deng C, et al. Sam-adapter: Adapting
segment
anything
in
underperformed
scenes[C]//Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2023: 3367-3375.
[32] Huang Y, Lai W, Ji J, et al. Hrsam: Efficiently segment
anything in high-resolution images[J]. arXiv preprint
arXiv:2407.02109, 2024.
[33] Zhang H, Su Y, Xu X, et al. Improving the generalization
of segmentation foundation model under distribution shift
via weakly supervised adaptation[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024: 23385-23395.
[34] 胡升龙, 陈彬, 张开华, 宋慧慧. 场景结构知识增强的
协同显著性目标检测[J]. 计算机工程, 2025, 51(1):
31-41.
HU Shenglong, CHEN Bin, ZHANG Kaihua, SONG
Huihui. Co-Saliency Object Detection Enhanced by
Scene Structure Knowledge[J]. Computer Engineering,
2025, 51(1): 31-41.
[35] Sahoo P, Singh A K, Saha S, et al. A systematic survey of
prompt engineering in large language models: Techniques
and applications[J]. arXiv preprint arXiv:2402.07927,
2024.
[36] Chen K, Liu C, Chen H, et al. RSPrompter: Learning to
prompt for remote sensing instance segmentation based
on visual foundation model[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2024.
[37] Zhang R, Jiang Z, Guo Z, et al. Personalize segment
anything model with one shot[J]. arXiv preprint
arXiv:2305.03048, 2023.
[38] 白宇, 王珺, 冉红雷, 安胜彪. 半导体器件内部缺陷标
注与检测方法研究[J]. 计算机工程, 2024, 50(12):
245-253.
BAI Yu, WANG Jun, RAN Honglei, AN Shengbiao.
Research on Internal Defect Annotation and Detection
Methods of Semiconductor Devices[J]. Computer
Engineering, 2024, 50(12): 245-253.
[39] Leng T, Zhang Y, Han K, et al. Self-sampling meta SAM:
enhancing few-shot medical image segmentation with
meta-learning[C]//Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2024:
7925-7935.
[40] Antoniou A, Edwards H, Storkey A. How to train your
MAML[C]//International
conference
representations. 2018.
on
learning
[41] Sun W, Liu Z, Zhang Y, et al. An alternative to wsss? an
empirical study of the segment anything model (sam) on
weakly-supervised semantic segmentation problems[J].
arXiv preprint arXiv:2305.01586, 2023.
[42] He C, Li K, Zhang Y, et al. Weakly-supervised concealed
object segmentation with sam-based pseudo labeling and
multi-scale feature grouping[J]. Advances in Neural
Information Processing Systems, 2024, 36.
[43] Li B, Xiao H, Tang L. ASAM: Boosting Segment
Anything
Model
with
Adversarial
Tuning[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024:
3699-3710.
[44] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic
models[J]. Advances in neural information processing
systems, 2020, 33: 6840-6851.
[45] Xu Q, Li J, He X, et al. ESP-MedSAM: Efficient
Self-Prompting SAM for Universal Domain-Generalized
Medical Image Segmentation[J]. arXiv preprint
arXiv:2407.14153, 2024.
[46] Dai H, Ma C, Yan Z, et al. Samaug: Point prompt
augmentation for segment anything model[J]. arXiv
preprint arXiv:2307.01187, 2023.
[47] Xu Q, Li J, He X, et al. ESP-MedSAM: Efficient
Self-Prompting SAM for Universal Domain-Generalized
Medical Image Segmentation[J]. arXiv preprint
arXiv:2407.14153, 2024.
[48] Yildiz Z, Gu H, Zhang J, et al. SegmentWithSAM: 3D
Slicer
Extension for Segment Anything Model
(SAM)[C]//Medical Imaging with Deep Learning. 2024.
[49] Wang D, Zhang J, Du B, et al. Samrs: Scaling-up remote
sensing segmentation dataset with segment anything
model[J]. Advances in Neural Information Processing
Systems, 2024, 36.
[50] Chen K, Liu C, Chen H, et al. RSPrompter: Learning to
prompt for remote sensing instance segmentation based
on visual foundation model[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2024.
[51] 方乐缘, 旷洋, 刘强, 等. 基于时差提示 SAM 的遥感
变化检测[J]. 信号处理, 2024, 40(3).
Fang L Y, Kuang Y, Liu Q, et al. Temporal Difference
Prompted SAM for Remote Sensing Change Detection[J].
Journal of Signal Processing, 2024, 40(3).
[52] Zhang J, Yang X, Jiang R, et al. RSAM-Seg: A
SAM-based Approach with Prior Knowledge Integration
for Remote Sensing Image Semantic Segmentation[J].
arXiv preprint arXiv:2402.19004, 2024.
[53] Lee H, Kim K, Lee K. Application of Geo-Segment
Anything Model (SAM) Scheme to Water Body
Segmentation: An Experiment Study Using CAS500-1
Images[J]. Korean Journal of Remote Sensing, 2024,
40(4): 343-350.
[54] Zhang X, Liu Y, Lin Y, et al. Uv-sam: Adapting segment
anything
model
for
urban
village
identification[C]//Proceedings of the AAAI Conference
on Artificial Intelligence. 2024, 38(20): 22520-22528.
[55] Xi L, Yu J, Ge D, et al. SAM-CFFNet: SAM-based
cross-feature fusion network for intelligent identification
of landslides[J]. Remote Sensing, 2024, 16(13): 2334.
[56] Giannakis I, Bhardwaj A, Sam L, et al. Deep learning
universal crater detection using segment anything model
(sam)[J]. arXiv preprint arXiv:2304.07764, 2023.
[57] Zhang J, Bai C, He H, et al. SAM-E: Leveraging Visual
Foundation Model with Sequence Imitation for Embodied
Manipulation[J]. arXiv preprint arXiv:2405.19586, 2024.
[58] Zhang S, Lu Q. Innovative Integration of Visual
Foundation Model with a Robotic Arm on a Mobile
Platform[J]. arXiv preprint arXiv:2404.18720, 2024.
[59] Moenck K, Wendt A, Prünte P, et al. Industrial Segment
Anything--a Case Study in Aircraft Manufacturing,
Intralogistics, Maintenance, Repair, and Overhaul[J].
arXiv preprint arXiv:2307.12674, 2023.
[60] Liang W, Ma X G. Group-Mix SAM: Lightweight
Solution for Industrial Assembly Line Applications[J].
arXiv preprint arXiv:2403.10053, 2024.
[61] Ahmadi M, Lonbar A G, Naeini H K, et al. Application of
segment anything model for civil infrastructure defect
assessment[J]. arXiv preprint arXiv:2304.12600, 2023.
[62] Li Z, Huo D, Meurer M, et al. Efficient Cutting Tool Wear
Segmentation
Based
on
Segment
Anything
Model[C]//International Manufacturing Science and
Engineering
Conference.
American
Society
Mechanical Engineers, 2024, 88117: V002T07A002.
of
[63] Yang Y, Wu X, He T, et al. Sam3d: Segment anything in
3d scenes[J]. arXiv preprint arXiv:2306.03908, 2023.
[64] Cordts M, Omran M, Ramos S, et al. The cityscapes
dataset
for
semantic
urban
scene
understanding[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016:
3213-3223.
[65] Neuhold G, Ollmann T, Rota Bulo S, et al. The mapillary
vistas dataset for semantic understanding of street
scenes[C]//Proceedings of the IEEE international
conference on computer vision. 2017: 4990-4999.
[66] Lakhani P, Mongan J, Singhal C, et al. The 2021
SIIM-FISABIO-RSNA machine learning COVID-19
challenge: Annotation and standard exam classification of
COVID-19 chest radiographs[J]. Journal of Digital
Imaging, 2023, 36(1): 365-372.
[67] Zhang Z, Cai H, Han S. Efficientvit-sam: Accelerated
segment
anything
model
without
performance
loss[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024:
7859-7863.
[68] Zhou C, Li X, Loy C C, et al. Edgesam:
Prompt-in-the-loop distillation for on-device deployment
of sam[J]. arXiv preprint arXiv:2312.06660, 2023.
[69] Song Y, Zhou Q, Li X, et al. BA-SAM: Scalable
Bias-Mode Attention Mask for Segment Anything
Model[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024:
3162-3173.
[70] Li F, Zhang H, Sun P, et al. Semantic-sam: Segment and
recognize anything at any granularity[J]. arXiv preprint
arXiv:2307.04767, 2023.
[71] Feng Z, Zhang Y, Liu Y, et al. Swinsam: Fine-Grained
Polyp Segmentation in Colonoscopy Images Via Segment
Anything Model Integrated with a Swin Transformer
Decoder[J]. Available at SSRN 4673046.
[72] Zhang L, Liang Y, Zhang R, et al. BLO-SAM: Bi-level
Optimization Based Finetuning of the Segment Anything
Model
for
Overfitting-Preventing
Semantic
Segmentation[C]//Forty-first International Conference on
Machine Learning.
[73] Jiang M, Zhou J, Wu J, et al. Uncertainty-Aware Adapter:
Adapting Segment Anything Model (SAM) for
Ambiguous Medical Image Segmentation[J]. arXiv
preprint arXiv:2403.10931, 2024.
[74] Zhang K, Liu D. Customized segment anything model for
medical
image
segmentation[J].
arXiv:2304.13785, 2023.
arXiv
preprint
[75] Gao Y, Xia W, Hu D, et al. Desam: Decoupling segment
anything model for generalizable medical image
segmentation[J]. arXiv preprint arXiv:2306.00499, 2023.
[76] Yue W, Zhang J, Hu K, et al. Surgicalsam: Efficient class
promptable
surgical
instrument
segmentation[C]//Proceedings of the AAAI Conference
on Artificial Intelligence. 2024, 38(7): 6890-6898.
[77] Sun Y, Chen J, Zhang S, et al. VRP-SAM: SAM with
visual
reference
prompt[C]//Proceedings
of
the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024: 23565-23574.
[78] Cheng Y, Li L, Xu Y, et al. Segment and track anything[J].
arXiv preprint arXiv:2305.06558, 2023.
[79] Mo S, Tian Y. Av-sam: Segment anything model meets
audio-visual localization and segmentation[J]. arXiv
preprint arXiv:2305.01836, 2023.
[80] Zhang Y, Cheng T, Hu R, et al. Evf-sam: Early
vision-language fusion for text-prompted segment
anything model[J]. arXiv preprint arXiv:2406.20076,
2024.
[81] Rajič F, Ke L, Tai Y W, et al. Segment anything meets
point tracking[J]. arXiv preprint arXiv:2307.01197, 2023.
[82] Chen P, Xie L, Huo X, et al. SAM-CP: Marrying SAM
with Composable Prompts for Versatile Segmentation[J].
arXiv preprint arXiv:2407.16682, 2024.
[83] Zhou C, Ning K, Shen Q, et al. SAM-SP: Self-Prompting
Makes SAM Great Again[J]. arXiv preprint
arXiv:2408.12364, 2024.
[84] Xu Y, Tang J, Men A, et al. Eviprompt: A training-free
evidential prompt generation method for segment
anything model in medical images[J]. arXiv preprint
arXiv:2311.06400, 2023.
[85] Chen Z, Xu Q, Liu X, et al. UN-SAM: Universal
Prompt-Free Segmentation for Generalized Nuclei
Images[J]. arXiv preprint arXiv:2402.16663, 2024.
[86] Qi X, Wu Y, Mao Y, et al. Self-guided few-shot semantic
segmentation for remote sensing imagery based on large
vision models[C]//International Conference on Machine
Learning and Intelligent Communications. Cham:
Springer Nature Switzerland, 2023: 69-80.
[87] Hu M, Li Y, Yang X. Skinsam: Empowering skin cancer
segmentation with segment anything model[J]. arXiv
preprint arXiv:2304.13973, 2023.
[88] Cao Y, Xu X, Sun C, et al. Segment any anomaly without
training via hybrid prompt regularization[J]. arXiv
preprint arXiv:2305.10724, 2023.
[89] Cui C, Deng R, Liu Q, et al. All-in-sam: from weak
annotation to pixel-wise nuclei segmentation with
prompt-based
finetuning[C]//Journal
of
Physics:
Conference Series. IOP Publishing, 2024, 2722(1):
012012.
[90] Ahmadi M, Lonbar A G, Naeini H K, et al. Application of
segment anything model for civil infrastructure defect
assessment[J]. arXiv preprint arXiv:2304.12600, 2023.
[91] Lin T Y, Maire M, Belongie S, et al. Microsoft coco:
Common objects in context[C]//Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,September 6-12, 2014, Proceedings, Part V 13. Springer
International Publishing, 2014: 740-755.
[92] Everingham M, Van Gool L, Williams C K I, et al. The
pascal visual object classes (voc) challenge[J].
International journal of computer vision, 2010, 88:
303-338.
[93] Zhou B, Zhao H, Puig X, et al. Semantic understanding of
scenes through the ade20k dataset[J]. International
Journal of Computer Vision, 2019, 127: 302-321.
[94] Martin D, Fowlkes C, Tal D, et al. A database of human
segmented natural images and its application to
evaluating segmentation algorithms and measuring
ecological
statistics[C]//Proceedings
eighth
IEEE
international conference on computer vision. ICCV 2001.
IEEE, 2001, 2: 416-423.
[95] Deng J, Dong W, Socher R, et al. Imagenet: A large-scale
hierarchical image database[C]//2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009:
248-255.
[96] Wang L, Lu H, Wang Y, et al. Learning to detect salient
objects with image-level supervision[C]//Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2017: 136-145.
[97] Wang J, Zheng Z, Ma A, et al. LoveDA: A remote sensing
land-cover dataset for domain adaptive semantic
segmentation[J]. arXiv preprint arXiv:2110.08733, 2021.
[98] Leclerc S, Smistad E, Pedrosa J, et al. Deep learning for
segmentation using an open large-scale dataset in 2D
echocardiography[J]. IEEE transactions on medical
imaging, 2019, 38(9): 2198-2210.
[99] Zhang J, Fan D P, Dai Y, et al. RGB-D saliency detection
via
cascaded
minimization[C]//Proceedings
mutual
of
information
the
IEEE/CVF
international conference on computer vision. 2021:
4338-4347.
[100] Tu Z, Xia T, Li C, et al. RGB-T image saliency detection
via collaborative graph learning[J]. IEEE Transactions on
Multimedia, 2019, 22(1): 160-173.
[101] Qin X, Dai H, Hu X, et al. Highly accurate dichotomous
image
segmentation[C]//European
Conference
on
Computer Vision. Cham: Springer Nature Switzerland,
2022: 38-56.
[102] Fan D P, Ji G P, Sun G, et al. Camouflaged object
detection[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020:
2777-2787.
[103] Vicente T F Y, Hou L, Yu C P, et al. Large-scale training
of shadow detectors with noisily-annotated shadow
examples[C]//Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VI 14. Springer
International Publishing, 2016: 816-832.
[104] Fan D P, Ji G P, Xu P, et al. Advances in deep concealed
scene understanding[J]. Visual Intelligence, 2023, 1(1):
16.
[105] Tajbakhsh N, Gurudu S R, Liang J. Automated polyp
detection in colonoscopy videos using shape and context
information[J]. IEEE transactions on medical imaging,
2015, 35(2): 630-644.
[106] Shumailov I, Shumaylov Z, Zhao Y, et al. AI models
collapse when trained on recursively generated data[J].
|